線形回帰 TensorBoard2
経過数値のグラフ化
# GraphのReset
tf.reset_default_graph()
# Data保存先
LOGDIR = './data'
...
# TensorBoardへの反映
w_graph = tf.summary.scalar("w_graph", w)
b_graph = tf.summary.scalar("b_graph", b)
y_graph = tf.summary.histogram("y_graph", y)
loss_graph = tf.summary.scalar("loss_graph", loss)
...
# セッション
with tf.Session() as sess:
...
# Summary
summary_writer = tf.summary.FileWriter(LOGDIR, sess.graph)
summary_op = tf.summary.merge_all()
# Graph
with tf.Graph().as_default() as graph:
...
# トレーニング
for step in range(training_step):
...
# 途中経過表示
if step % validation_step == 0:
...
# TensorBoardにも反映
summary_str = sess.run(summary_op, feed_dict={X:X_train, y:y_train})
summary_writer.add_summary(summary_str, step)
Coding
# coding:utf-8
import numpy as np
import matplotlib.pyplot as plt
import tensorflow as tf
b_train = -1
w_train = 0.7
x_train = np.linspace(0, 1.0, 100)
y_train = x_train * w_train + b_train
plt.figure(1)
plt.plot(x_train, y_train, 'ro', label='Data')
plt.plot(x_train, y_train, 'k-', label='Line')
plt.show()
# GraphのReset(TF関連処理の一番最初に呼び出す)
tf.reset_default_graph()
# 変数の定義
x = tf.placeholder(tf.float32, name="input")
y = tf.placeholder(tf.float32, name="output")
w = tf.Variable(np.random.randn(), name="weight")
b = tf.Variable(np.random.randn(), name="bias")
# 線形回帰のモデル
with tf.name_scope('forward'):
y_pred = tf.add(tf.multiply(x, w), b)
# 損失関数
with tf.name_scope('loss'):
loss = tf.reduce_mean(tf.pow(y_pred - y, 2))
# Optimizer
# 勾配降下法
learning_rate = 0.1
train_op = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss)
# Data保存先
LOGDIR = './data'
# TensorBoardへの反映
w_graph = tf.summary.scalar("w_graph", w)
b_graph = tf.summary.scalar("b_graph", b)
y_graph = tf.summary.histogram("y_graph", y)
loss_graph = tf.summary.scalar("loss_graph", loss)
# セッション
with tf.Session() as sess:
# 変数の初期化
init_op = tf.global_variables_initializer()
sess.run(init_op)
# Summary
summary_writer = tf.summary.FileWriter(LOGDIR, sess.graph)
summary_op = tf.summary.merge_all()
# Graph
with tf.Graph().as_default() as graph:
# トレーニング回数
training_step = 1500
validation_step = 100
#トレーニング
for step in range(training_step):
sess.run(train_op, feed_dict={x:x_train, y:y_train})
# 途中経過表示
if step % validation_step == 0:
loss_output = sess.run(loss, feed_dict={x:x_train, y:y_train})
w_output = sess.run(w)
b_output = sess.run(b)
print "Step %i, cost %f, weight %f, bias %f" % (step, loss_output, w_output, b_output)
# TensorBoardにも反映
summary_str = sess.run(summary_op, feed_dict={x:x_train, y:y_train})
summary_writer.add_summary(summary_str, step)
summary_writer.flush()
TensorBoardの起動
Datalab上でtensorboardを起動します。うまく起動しない場合、Reset sessionをでResetを選び、NotebookもBrowserのReloadボタンで再起動します。
!tensorboard --logdir=data/
ブラウザのSCALARとHISTGRAMSを選択します。
計測タイミングの調整
グラフが直角になっているので、
# トレーニング回数
training_step = 1000
validation_step = 100
の設定を、validation_stepを10に変更し、10回に1回のペースで反映するようにする。
# トレーニング回数
training_step = 1000
validation_step = 10
Notebook
https://github.com/FaBoPlatform/TensorFlow/blob/master/notebooks/linear_regression03.ipynb